基于核平滑构建物种分布范围:
代码来源
## 基于核平滑计算物种分布范围:
https://jamesepaterson.github.io/jamespatersonblog/04_trackingworkshop_kernels
案例:
as <- read.csv('D:/xh2/f1_points/xhas.csv')[,2:3] %>% na.omit() %>% round(4)
tail(as)
library(sp)
plot(as2)
map(add =T)
as2 = SpatialPoints(cbind(as$longitude, as$latitude), proj4string = CRS("+init=epsg:4326" ))
as.sp <- spTransform(as2, CRS("+init=epsg:3857"))
as.sp@coords
library(adehabitatHR)
kernel.ref <- kernelUD(as.sp, h = "href", grid = 1000,hlim = c(0.5, 1.5))
image(kernel.ref)
kde <- raster(kernel.ref)
plot(kde)
library(tmap)
tm_shape(kde) + tm_raster("ud")
as.kernel.poly <- getverticeshr(kernel.ref, percent = 90)
plot(as.kernel.poly)
points(as.sp)
zk_area<- spTransform(as.kernel.poly, CRS("+init=epsg:4326"))
library(rgdal)
writeOGR(zk_area, "C:/Users/admin/Desktop/aa.shp",layer="ll" , driver="ESRI Shapefile")
library(rgdal)
rgdaltest<-readOGR('C:/Users/admin/Desktop/l2.shp')
rgdaltest@proj4string
plot(rgdaltest)
coordinates(as) <- c("longitude","latitude" )
proj4string(as) <- CRS("+init=epsg:4326")
points(as)
library(sp)
library(rgdal)
library(adehabitatHR)
library(dplyr)
library(magrittr)
library(xlsx)
st1 <- read.xlsx("mtcars.xlsx", 1)
turtles <- read.xlsx(file = "C:/Users/admin/Desktop/tracking_sample.xlsx",
1) %>%
filter(id %in% c("T003", "T004"),
!is.na(x),
!is.na(y))
bound.kernel.t003 <- turtles.sp[turtles.sp$id == "T003","id"] %>%
kernelUD(.,
h = trad.kernel$T003@h$h,
grid = 1000,
boundary = bound)
bound.kernel.t003.poly <- bound.kernel.t003 %>%
getverticeshr(., percent = 95)
bound.kernel.t004 <- turtles.sp[turtles.sp$id == "T004","id"] %>%
kernelUD(.,
h = trad.kernel$T004@h$h,
grid = 1000,
boundary = bound)
bound.kernel.t004.poly <- bound.kernel.t004 %>%
getverticeshr(., percent = 95)